# Lion Stalking Device

Group 22 Quinn Kern Allely & Rachel Bilski

## Outline

- •Need, Scope, and Requirements
- •Specifics Details of Analysis
- •Specific Details of Chosen Design (top)
- •Parts, Materials, Manufacturing (top)
- •Specific Details of Chosen Design (bottom)
- •Parts, Materials, Manufacturing (bottom)
- •Manufacturing/ How to make
- •Safety
- •Prices/Lead Times
- Conclusions



## Need, Scope, and Requirements

- Stalking behavior is difficult to encourage in captivity
- Contributes to health problems
- St. Louis Zoo wants to keep its lions healthy



http://www.mathewssafaris.com/gallery/msLionStalking.jpg

## Need, Scope, and Requirements



 Design a device to elicit stalking behavior

- Minimize direct human interaction
- Do not hurt the lions

http://www.kittenspet.com/wp-content/uploads/2010/09/lionesses-and-lion-2.jpg

## Need, Scope, and Requirements

#### • Size

- Must be smaller than 4ft x 2ft x 2ft (1.22m x .61m x .61m)
- Must be larger than 4in x 4in x 4in (.10m x .10m x .10m)
- Cost
- Must cost less than \$400.00
- Durable
- Safe



#### Features:

- Locomotion
- User-controlled
- Ball connected by reversible process

**Specific Calculations:** 

- Friction of pulley on wire
- Gear Ratio between motor and pulley
- Magnetic force attaching ball and wire
- Stall torque of ball motor
- Tensile requirements of wire

#### Gear ratio:

 $\frac{(8.4V)(5800rpm/V)}{(4m/s)} = 31.83rps = 1909.86rpm$ 

 $(2\pi)(gear_{pulley})(rpm_{pulley}) = (2\pi)(gear_{motor})(rpm_{motor})$  $(gear_{pulley})(rpm_{pulley}) = (gear_{motor})(rpm_{motor})$ 

 $\frac{rpm_{motor}}{rpm_{pulley}} = \frac{gear_{pulley}}{gear_{motor}} = 25.51$ 



#### Maximum Rotational Acceleration:



 $F = \mu mg$ 

$$\alpha = 4.93 * 10^9 \frac{rad}{s^2}$$



Ð

http://www.homedepot.com/p/Lehigh-110-lb-1-1-4-in-Zinc-Fast-Eye-Utility-Pulley-7086S-6/100146115

#### Key features:

- Moving parts is novel in this field
  - Due to durability
- Keeper interaction

- Тор
- Motor
- Pulley
- Radiofrequency Receiver
- Power Source



- Top (cont.)
  - Gears
- Wire Rope



## Top (cont.)

 Gears will be attached directly to the pulley wheel and the motor shaft



- Top (cont.)
  - Location of wire



#### 1/4" Heavy-Duty Pulley

#### 1/4" Vinyl-Coated Wire

130ft





Ð

http://www.homedepot.com/p/Everbilt-1-4-in-x-200-ft-Galvanized-Vinyl-Coated-Wire-Rope-806410/203958877

Ð

#### 2.4 GHz Ground Receiver

#### 109W Electric Motor [2]





#### Gears

-1mm

-25.51mm

Custom-made from *rushgears.com* 

#### 9 Volt Battery



#### Padeye

(for construction)



#### **Circuit Board**



http://www.berkeleypoint. com/products/hardware/parts/hd\_square\_pad\_eye\_ [3]

#### Bottom

- Motor
- Ball (two halves)
- Power Source
- Weight
- Radiofrequency Receiver



#### Ball

10" dia., hollow

Manufacturing Note: EcoBond adhesive vs. manufactured whole



## Motor, Controller, and Receiver

Cost-effective to use the same as previously mentioned





### Weight

50g ideal, many options for best movement.

#### **Power Source**

Less power needed, so cheaper option is AA batteries



http://ecx.images-amazon.com/images/I/51AIgFTqVeL.\_SY355\_.jpg



## Manufacturing/ How to make

## Тор

- Pulley manufacturing process to include gear
- Print circuit

#### Bottom

- Ball manufacturing to include inner machinery
- Print circuit

## Safety

- Most issues are with lion interaction
- Reduce likelihood of risk by informing handlers of potential risks
- Reduce severity of risk with new design concepts

| User /<br>Task    | Hazard /<br>Failure Mode                                                                                                                                            | Initial Assessmer<br>Severity<br>Probability | nt<br>Risk Level | Risk Reduction Methods<br>/Control System                                                                                                                                                                                                                                                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lion<br>Bite      | electrical / electronic :<br>energized equipment / live<br>parts<br>Live magnets present where<br>the lions can reach them                                          | Minor<br>Very Likely                         | Medium           | None<br>Written warning                                                                                                                                                                                                                                                                   |
| Lion<br>Bite      | slips / trips / falls : falling<br>material / object<br>Moving object may hit lions                                                                                 | Minor<br>Likely                              | Low              | Ensure lions are not in the<br>way when operating.<br>Written warning                                                                                                                                                                                                                     |
| Lion<br>Bite      | chemical : reaction to / with<br>irritant chemicals<br>Lions may ingest trace levels<br>of chemicals                                                                | Moderate<br>Unlikely                         | Low              | Ensure the lions are not<br>consuming large sections of<br>the setup.<br>Written warning                                                                                                                                                                                                  |
| Lion<br>Push/Pull | mechanical : drawing-in /<br>trapping / entanglement<br>Risk of becoming entangled<br>with the wire                                                                 | Serious<br>Unlikely                          | Medium           | Ensure that the wires are<br>properly secured, and do not<br>coil on the groun (are the<br>appropriate lengths)<br>/Written warning                                                                                                                                                       |
| Lion<br>Push/Pull | material handling : excessive<br>weight<br>If the lion bites the device<br>and pulls on it, it will lead to<br>breaking of the wire and<br>destruction of the setup | Catastrophic<br>Likely                       | High             | Ensure that the magnetic<br>attraction is sufficiently weak<br>to allow release of the ball<br>under stress. Use a wire that<br>is difficult to bite and hold.<br>Another method for<br>consideration is an additional<br>failsafe at the top of the<br>vertical wire.<br>Written warning |

## **Price/Lead time Summary**

#### PRICE SUMMARY

| Wire Rope, 130ft                 | .(24hrs)     | \$80.39 |
|----------------------------------|--------------|---------|
| Heavy-duty ¼" Pulley             | .(24hrs)     | \$5.00  |
| Two Pad Eyes                     | .(24hrs)     | \$52.00 |
| Neodymium Magnets (x2)           | .(1-2 weeks) | \$6.00  |
| Electric Motor (for top portion) | (3-6 weeks)  | \$15.00 |
| Radiofrequency receiver (x2)     | (3-6 weeks)  | \$20.00 |
| Radiofrequency Transmitter (x2)  | (3-6 weeks)  | \$33.78 |
| Controller Board (x2)            | (2 weeks)    | \$65.98 |
| Boomer Ball                      | (3-6 weeks)  | \$48.00 |
| Gears (1mm & 25.51mm)            | (1 week)     | \$20.00 |
| Electric Motor (for ball)        | (3-6 weeks)  | \$35.00 |

| Fotal\$381.1 |
|--------------|
|--------------|

## Conclusions

- Did you solve the problem?
  - Original problem is nebulous
  - Under budget
  - Accomplishes subtasks
- Future Direction
  - Test with live animals
  - Refine mechanisms
  - Incorporate other senses

- What we learned
  - Pragmatism vs idealism
  - Problem breakdownfrom complex to manageable

## **Physical Prototype**

## DEMO

#### Sources

- 1. <u>http://www.hobbyking.com/hobbyking/store/\_23784\_OrangeRx\_GR300\_DSM2\_compatible\_3Ch\_2\_4Ghz\_Ground\_Receiver.html</u>
- 2. http://www.hobbyking.com/hobbyking/store/\_22299\_XK2030\_5800KV\_Brushless\_Inrunner.html
- 3. <u>https://www.bananarobotics.com/shop/Pololu-Simple-Motor-Controller-18v7?</u> <u>gclid=Cj0KEQiAwPCjBRDZp9LWno3p7rEBEiQAGj3KJokROs2YL4kOpzBdLXFJSNrK\_qmPipFt59E-dSVUawaAh6S8P8HAQ</u>
- 4. "Boomer Ball 10 Inch Heavy Duty Challenger." *Boomer Ball*. Boomer Ball, n.d. Web. 01 Dec. 2014.
- 5. Elliott, Rod. "Power Handling Vs. Efficiency." *Power Handling Vs. Efficiency*. ESP, 16 Dec. 2014. Web. 30 Nov. 2014. <a href="http://sound.westhost.com/articles/pwr-vs-eff.htm">http://sound.westhost.com/articles/pwr-vs-eff.htm</a>.
- 6. "Everbilt 1/4 In. X 200 Ft. Galvanized Vinyl-Coated Wire Rope-806410 at The Home Depot." *The Home Depot*. Home Depot Inc., n.d. Web. 01 Dec. 2014. <a href="http://www.homedepot.com/p/Everbilt-1-4-in-x-200-ft-Galvanized-Vinyl-Coated-Wire-Rope-806410/203958877">http://www.homedepot.com/p/Everbilt-1-4-in-x-200-ft-Galvanized-Vinyl-Coated-Wire-Rope-806410/203958877</a>>.
- 7. "Force between Magnets." *Wikipedia*. Wikimedia Foundation, 28 Nov. 2014. Web. 28 Nov. 2014. <a href="http://en.wikipedia.org/wiki/Force\_between\_magnets">http://en.wikipedia.org/wiki/Force\_between\_magnets</a>.
- 8. "Friction and Coefficients of Friction." *Friction and Coefficients of Friction*. Engineering Toolbox, n.d. Web. 28 Nov. 2014. <a href="http://www.engineeringtoolbox.com/friction-coefficients-d\_778.html">http://www.engineeringtoolbox.com/friction-coefficients-d\_778.html</a>.
- 9. "Gorilla 7/8 Fl. Oz. General Purpose Epoxy-42001 at The Home Depot." *The Home Depot.* N.p., n.d. Web. 01 Dec. 2014.
- 10. "Gorilla Epoxy." Gorilla Glue. Gorilla Glue, Inc., n.d. Web. 1 Dec. 2014